Pinching constants for hyperbolic manifolds

M. Gromov and W. Thurston
Princeton University, Department of Mathematics, Princeton, NJ 08544, USA

Summary. We show in this paper that for every \(n \geq 4 \) there exists a closed \(n \)-dimensional manifold \(V \) which carries a Riemannian metric with negative sectional curvature \(K \equiv -1 \). We also estimate the (pinching) constants \(H \) for which our manifolds \(V \) admit metrics with \(-1 \leq K \leq -H \).

0. Introduction

0.1. Basic construction. Start with an orientable manifold \(V \) with \(K(V) = -1 \) and let \(V' \) be an oriented totally geodesic submanifold of codimension two in \(V \), such that the homology class \([V'] \in H_{n-2}(V) \) is trivial. (See §1 for examples of such \(V \) and \(V' \).) Then there exists a cyclic ramified (at \(V' \)) covering \(\tilde{V} \rightarrow V \) of a given order \(i = 1, 2, \ldots \). It is not hard to construct a metric \(\tilde{g} \) with \(K \leq -1 \) on every manifold \(\tilde{V} \) (see §2).

Let us estimate the volume of \((\tilde{V}, \tilde{g}) \). To do this we triangulate \(V \) in such a way that \(V' \) becomes a subcomplex, then lift this triangulation to \(\tilde{V} \) and order the vertices of the lifted triangulation. Then, by induction on \(k = 1, \ldots, n = \dim(V) \), we straighten all lifted \(k \)-simplices \(d^k \subset \tilde{V} \) as follows (compare [Th]). We lift \(d^k \) to the universal covering of \(\tilde{V} \), replace it by the geodesic cone (for the metric \(\tilde{g} \)) from the first vertex (with respect to the ordering) over the opposite \((k-1)\)-face (which has already been straightened out) and then project this cone back to \(\tilde{V} \). Thus we obtain a covering of \(\tilde{V} \) by \(iN \) straightened \(n \)-simplices, where \(N = N(V, V') \) is the number of \(n \)-simplices of the original triangulation of \(V \). Since \(K(\tilde{g}) \leq -1 \) every straightened \(k \)-simplex has volume \(\leq \pi \) for \(k \geq 2 \). (See [Th, Gr1, I-Y].) Therefore volume grows at most in proportion to the degree of the covering:

\[
\text{Vol}(\tilde{V}, g) \leq Ci = Ni\pi.
\]

Suppose that there were a metric of constant curvature \(K = -1 \) on \(\tilde{V} \). Consider the action of the cyclic group \(\mathbb{Z}_i \) on \(\tilde{V} \) by deck transformations. If \(n = \dim \tilde{V} \geq 3 \), then by the Mostow rigidity theorem there exists an isometric
action of \mathbb{Z}_i on \tilde{V}^i whose fixed point set $V'' \subset \tilde{V}^i$ is diffeomorphic to V' and whose quotient $\tilde{V}^i = \tilde{V}^i / \mathbb{Z}_i$ has a natural orbifold structure of constant curvature $K = -1$. Observe that no two orbifolds \tilde{V}^i are isometric (though the topological spaces \tilde{V}^i may be homeomorphic to V) and that

$$\text{Vol}(\tilde{V}^i) \leq \frac{\text{Vol}(\tilde{V}^i)}{i} \leq C.$$

In the case that $n = \dim \tilde{V}^i \geq 4$, Wang's finiteness theorem (see [W]) for locally symmetric orbifolds can be applied. In particular, this theorem asserts for every $n \geq 4$ that there are at most finitely many isometry classes of n-dimensional orbifolds V with $K(V) \equiv -1$ and with Vol $V \leq$ constant. (There are infinitely many three-dimensional manifolds V with $K(V) = -1$ and Vol $V \leq 2.03$ - see [Th].) This obviously contradicts our assumption $K(\tilde{g}_i) \equiv -1$ for $i \geq i_0$, so the manifolds \tilde{V}^i for $i \geq i_0$ admit no metrics with $K = -1$.

0.2. Remark. It is likely that none of the \tilde{V}^i ($i = 2, 3, \ldots$) admit a metric with $K = -1$. (Compare 3.6.)

0.3. Manifolds with curvature close to -1. Denote by $\text{Rad}^+ V'$ the normal injectivity radius of $V' \subset V$; that is, the greatest real number ρ for which the open ρ-neighborhood $U_\rho \subset V$ of V' is diffeomorphic to the normal bundle of V' in V. We shall see in §2 that every ramified covering \tilde{V}^i of V ramified over V' admits a metric \tilde{g}_i such that

$$-1 \geq K(\tilde{g}_i) \geq -1 - \epsilon^2,$$

where $\epsilon \leq 10 \rho^{-1} \log 2 \rho$ for $\rho \geq 10$. Using this we construct in §3 finite ramified coverings \tilde{V}_i of certain manifolds V_i of a given dimension $n \geq 4$, such that the manifolds \tilde{V}_i admit metrics \tilde{g}_i with $-1 \geq K(\tilde{g}_i) \geq -1 - \epsilon_i^2$, where $\epsilon_i \to 0$ for $i \to \infty$ and such that none of the \tilde{V}_i admits a metric with $K = -1$.

0.4. Remark. The above example contrasts sharply with the pinching theorems for $K > 0$, where the pinching $1 \leq K(V) < 4$ implies that V is homeomorphic to S^2 if $\pi_1(V) \equiv 0$ and where the stronger inequality $1 \leq K(V) \leq 1.4$ ensures the existence of a metric with $K = 1$ on V for all V (see [G-K-R]).

0.5. Unpinchable manifolds. The Wang theorem can be generalized to n-dimensional orbifolds with $-1 \geq K \geq -x_0$. Namely, if $n \geq 4$, there are at most finitely many diffeomorphism classes of n-dimensional orbifolds \tilde{V} with $-1 \geq K(\tilde{V}) \geq -x_0$ and with Vol $\tilde{V} \leq \text{const}$, where the diffeomorphisms are understood in the category of orbifolds and where the implied bound on the number of non-diffeomorphic manifolds \tilde{V} depends on n, x_0 and the constant (compare [Gr2]). It follows that for every $x \geq 1$ there exists an integer $i_0 = i_0(V, V')$ such that the ramified covering \tilde{V}^i for $i \geq i_0$ admits no \mathbb{Z}_i-equivariant metric with $-1 \leq K \leq -x$ (though it admits a \mathbb{Z}_i-invariant metric with $K < 0$ for all $i \geq 1$). Moreover, we shall prove in §4, under some additional assumptions on V and V', that the equivariance condition is redundant, and thus exhibit for every $n \geq 4$ and $x > 1$ a compact manifold \tilde{V} with a metric of negative curvature which carries no metric with $-1 \geq K \geq -x$.

0.6. Remark. The first example of a compact manifold with \(K < 0 \) which admits no locally symmetric metric is due to Mostow and Siu (See [M-S]). Namely, they produced a 4-dimensional manifold \(V \) with a Kähler metric of negative curvature such that the signature \(\sigma(V) \) does not vanish and the Euler characteristic \(\chi(V) \) satisfies \(\chi(V) = 3|\sigma(V)| \).

§1. Examples of ramified coverings

1.1. Let \(\Phi_n = \sum_{i=1}^{n} x_i^2 - \sqrt{2} x_{n+1}^2 \) and denote by \(\Gamma_n \) the group of automorphisms of the form \(\Phi_n \) over the ring of integers of the field \(\mathbb{Q}(\sqrt{2}) \). This group acts naturally on the hyperbolic space \(H^n \) and the action is discrete and cocompact. We consider subgroups \(\Gamma \subset \Gamma_n \) of finite index and study the orbifolds \(H^n / \Gamma \), which are called \(\Phi_n \)-orbifolds. If there are no torsion elements in \(\Gamma \) the orbifold \(H^n / \Gamma \) is actually a manifold of constant curvature \(-1\).

1.2. Lemma. Take a \(\Phi_n \)-manifold \(V \), for \(n \geq 2 \), and fix a positive real \(\rho \). Then there exists a finite covering \(\tilde{V} \to V \) and an oriented totally geodesic hypersurface \(\tilde{V}_0 \subset V \) such that:

 (i) \(\text{Rad}^+ \tilde{V}_0 \equiv \rho \);
 (ii) the class \([\tilde{V}_0] \in H_{n-1}(\tilde{V})\) vanishes;
 (iii) every connected component of \(\tilde{V}_0 \) is a \(\Phi_{n-1} \)-manifold.

Proof. Take a covering \(\tilde{V} \) whose fundamental group is a normal subgroup in \(\Gamma_n \). Then the reflection \(x_i \mapsto -x_i \) defines an involution \(\iota: \tilde{V} \to \tilde{V} \) whose fixed point set \(\tilde{V}_0 \) covers \(H_{n-1} \setminus \Gamma_{n-1} \subset H_n \setminus \Gamma_n \) under the obvious map \(\tilde{V} \to H_n / \Gamma_n \), where the hypersurface \(H_{n-1} \subset H_n \) corresponds to the subspace \(\{x_1 = 0\} \) in \(\mathbb{R}_{n-1} \). Now choose \(\tilde{V} \) with a sufficiently large injectivity radius (compared to \(\rho \)) at all \(\tilde{v} \in \tilde{V} \), thus making \(\text{Rad}^+ \tilde{V}_0 \equiv \rho \). Furthermore, we may assume (by passing to a double covering of \(\tilde{V} \) if necessary) that the manifold \(\tilde{V} / \iota \) with boundary \(\tilde{V} \setminus \iota \) is orientable, and we take the induced orientation on \(\tilde{V}_0 \). Clearly \([\tilde{V}_0] = 0\) and the proof is concluded.

By applying the lemma twice, first to \(V \) and then to \(\tilde{V}_0 \), we obtain the following

1.3. Corollary. For every \(n = 2, 3, \ldots \) and every \(\rho > 0 \) there exists an orientable \(\Phi_n \)-manifold \(V \) and a (possibly disconnected) totally geodesic oriented submanifold \(V' \) of codimension 2 in \(V \) such that

 (i) \(\text{Rad} V_0' \equiv \rho \);
 (ii) \(|V'| = 0 \); moreover, \(V' \) bounds a connected oriented totally geodesic hypersurface \(V_0 \subset V \).

1.4. Remark. The hypersurface \(V_0 \) lifts to an \(i \)-paged open book \(\sum V_j \) in the \(\mathbb{Z}_r \)-ramified covering \(\tilde{V} \) of \(V \). This book, consisting of \(i \) copies of \(V_0 \) joined together at \(V' \) is in fact a totally geodesic (singular) subspace in \(\tilde{V} \) with the singular Riemannian metric induced from \(V \).
§ 2. Metrics of negative curvature on ramified coverings

2.1. Lemma. Take real numbers \(i > 1 \) and \(\rho > 0 \) and set \(s(r) = \frac{1}{2}(e^{r} - e^{-r}) \). There exists a positive \(C^{\infty} \) function \(\sigma(r) = \sigma_{i, \rho}(r) \) for \(r \geq 0 \) such that

(i) \(\sigma'(r) > 0 \) and \(\sigma''(r) > 0 \) for \(r > 0 \);
(ii) \(\sigma(r) = s(r) \) for small \(r \geq 0 \) and \(\sigma(r) = is(r) \) for \(r \geq \rho \);
(iii) the ratio \(\sigma''/\sigma \) satisfies

\[
(C(i, \rho))^{-1} \leq \frac{\sigma''}{\sigma} \leq C(i, \rho),
\]

where \(C(i, \rho) \to 1 \) for \(\rho \to \infty \) and \(i \) fixed. In fact, one can find \(\sigma \) for which

\[
|1 - C^2| \leq 10 \rho^{-1} \log 2 i
\]

for all \(\rho > 10 \);
(iv) the ratio \(\sigma'/\sigma \) satisfies

\[
(C(i, \rho))^{-1} \leq \frac{\sigma'}{\sigma} \leq C(i, \rho)
\]

for the above \(C(i, \rho) \).

The proof is an elementary exercise which is left to the reader.

2.2. Recall that the hyperbolic metric in \(H^2 \) can be written in polar coordinates as \(dr^2 + s^2(r) d\theta^2 \), where \(r \geq 0 \) denotes the distance to a fixed point \(x \in H^2 \) and \(\theta \in [0, 2\pi] \) is the length parameter on the unit circle. Consider the \(Z_r \)-covering \(\tilde{H}^2 \to H^2 \) ramified at \(x \). Then the induced metric (outside the lift of \(x \) to \(\tilde{H} \)) can be written as \(dr^2 + i^2 s^2(r) d\theta^2 \) for the same \(r \) and \(\theta \). This metric can be smoothed at \(x \) by the metric \(dr^2 + \sigma^2(r) d\theta^2 \), for \(\sigma(r) \) as in the above lemma. The sectional curvature of this metric equals \(-\sigma''(r)/\sigma(r) \). Hence, it is strictly negative and close to \(-1 \) for \(\rho \) large compared to \(i \).

2.3. Take the hyperbolic space \(H^n \) for \(n \geq 2 \) and a subspace \(H^{n-2} \subset H^n \). The hyperbolic metric on \(H^n \) can be written as \(dr^2 + s^2(r) d\theta^2 + c^2(r) dx^2 \), for the above \(r \) and \(\theta \), where \(c(r) = \frac{1}{2}(e^{r} + e^{-r}) \) and \(dx^2 \) stands for the hyperbolic metric in \(H^{n-2} \). Take the \(Z_r \)-covering \(H^n \to H^n \), ramified at \(H^{n-2} \), and give it the metric

\[
\tilde{g}_i = dr^2 + s^2(r) d\theta^2 + c^2(r) dx^2.
\]

This \(\tilde{g}_i \) equals the induced metric (with \(K \equiv -1 \)) outside the \(\rho \)-neighborhood of (the lift of) \(H^{n-2} \).

2.4. Lemma. The sectional curvature of \(\tilde{g}_i \) is strictly negative. Moreover,

\[
-(C(i, \rho))^{-1} \geq K(\tilde{g}_i) \leq C(i, \rho)
\]

for the constant \(C \) in 2.1.

Proof. The submanifolds \(\theta = \text{constant} \) and \(x = \text{constant} \) clearly are totally geodesic for \(\tilde{g}_i \). Hence the curvature tensor \(R = R_{g_i} \) is diagonal in the basis
\[
\left\{ \begin{array}{c}
\partial_r = \frac{\partial}{\partial r}, \quad \partial \theta = \frac{\partial}{\partial \theta} X_1, \ldots, X_{n-2} \end{array} \right\},
\]

where \(X_1, \ldots, X_{n-2}\) are orthonormal fields in \(H^{n-2}\). Namely, for every four vectors from this basis, say \(A, B, C, D\), we have

\[R(A, B, C, D) = 0\]

unless \(A + B\) and either \((A, B) = (C, D)\) or \((A, B) = (D, C)\). Furthermore, by a straightforward computation, we have

\[R(\partial_r, \partial \theta, \partial_r, \partial \theta) = -\frac{\sigma''(r)}{\sigma(r)},\]

\[R(X_i, X_j, X_i, X_j) = -1 \quad \text{for} \quad i \neq j,\]

\[R(X_i, \partial_r, X_i, \partial r) = -1 \quad \text{for} \quad i = 1, \ldots, n-2,\]

\[R(\partial \theta, X_i, \partial \theta, X_i) = \frac{\sigma' c'}{\sigma c}.\]

Since \(R\) is diagonal, the curvature at every two-plane is a convex combination of the above numbers \(-1, -\sigma''/\sigma\) and \(\sigma' c'/\sigma c\), and the lemma follows from 2.1.

2.5. Let \(V\) be a complete manifold with \(K \equiv -1\) and let \(V' \subset V\) be a totally geodesic submanifold with \(\text{Rad}^1(V') \geq \rho\). Since the metric \(\tilde{g}_i\) in 2.3 is invariant under the isometries of the ramified covering \(\tilde{H}_n\), it “descends” to the ramified covering \(\tilde{V} \rightarrow V\). Thus we get metrics with \(K < 0\) on \(\tilde{V}\) and also metrics with \(K\) pinched between \(-1\) and \(-1-(10 \rho^{-1} \log 2)\) for \(\rho \geq 10\).

§ 3. Manifolds with pinched negative curvature

3.1. Consider a compact totally geodesic submanifold \(V'\) in a complete manifold \(V\) with \(K < 0\). Every non-trivial (i.e., non-contractible to \(V\)) homotopy class \(p\) of paths in \(V\) with endpoints in \(V'\) is homotopic to a unique geodesic segment \(\gamma\) in \(V\) normal to \(V'\) at the endpoints. We set

\[\text{Rad}^1(V') = \frac{1}{2} \inf_{\gamma} \text{length} \, \gamma,\]

where \(\gamma\) runs over the non-trivial classes. (If \(p\) is trivial length \(p = 0\).) We also have the following trivial

3.2. Lemma. Let \(\gamma_1\) and \(\gamma_2\) be geodesic segments issuing from a point \(v \in V \setminus V'\) and ending in \(V'\). If \(\gamma_1\) and \(\gamma_2\) are normal to \(V'\) and if the (class of) the composite path \(\gamma_1 \gamma_2^{-1}\) is trivial, then \(\gamma_1 = \gamma_2\).
Now consider distinct geodesic segments γ_1 and γ_2 from v to V' having equal length, say length $\gamma_1 = \gamma_2 = l$, and let α denote the angle between γ_1 and γ_2 at v.

3.3. Lemma. If $K(V) \geq -1$ the class $[\gamma_1, \gamma_2^{-1}]$ satisfies

$$\text{length} [\gamma_1, \gamma_2^{-1}] < \alpha \left(\frac{e^l - e^{-l}}{2} \right).$$

(*)

Proof. If $K \equiv -1$ the base of a triangle in H^2 having sides of length l and angles α satisfies

$$\text{length}(\text{base}) \leq \alpha \left(\frac{e^l - e^{-l}}{2} \right),$$

which proves the lemma for $K \equiv -1$. The general case (which is not very important for this paper) follows from the Toponogov comparison theorem.

3.4. Lemma. Let V' be the fixed point set of a faithful isometric action of the group Z_i on V. If $K(V) \geq -1$ and codim $V' = 2$ we have

$$\text{Rad}^1 V' > 0.1 \log i,$$

provided that $i > 10$.

Proof. Take the minimal non-trivial geodesic segment γ of length $l = 2 \text{Rad}^1 V'$ contained in V and with endpoints in V'. There exists some isometry in Z_i which moves γ to another such segment, say γ', making a angle $\alpha = 2 \pi / i$ with γ. Since γ is minimal, the path $\gamma' \gamma^{-1}$, which is non-trivial by 3.2, has length $\geq l$. Hence, by (*), the number l satisfies the inequality

$$l \leq \frac{\pi}{i} (e^l - e^{-l}),$$

which, for $i \geq 10$, implies

$$l \geq 0.2 \log i.$$

3.5. Consider a compact manifold V with $K \equiv -1$ and let $V' \subset V$ be a totally geodesic submanifold of codimension 2 with $\text{Rad}^1 V' = \rho$ for ρ large (eventually we'll make $\rho \to \infty$). Assume further that $[V'] = 0$ and that $\dim V \geq 4$. Then, by Wang's theorem (see 0.1), there exists a least integer j such that the ramified Z_i-covering $\bar{V}^i \to V$, for $i = 2j + 1$, admits no metric with $K \equiv -1$. Let us show that this \bar{V}^i has a metric with K close to -1. Indeed, by 2.5 there is a metric with

$$-1 \geq K \geq -1 - 100 \rho^{-1} (j + 2).$$

(1)

On the other hand, the manifold Φ^i, for $i = 2^j$, does admit a metric with $K \equiv 1$, and the axial manifold \bar{V}^i in \bar{V}^i is the fixed point set of the action of Z_i. Hence $\rho' = \text{Rad}^1 \bar{V}^i \geq j/20$ by 3.4. Since \bar{V}^i is a double cover of \bar{V}^i, we have, for some metric on \bar{V}^i, the inequality

$$-1 \geq K \geq -1 - (10 \log 4) (\rho')^{-1} \geq -1 - 400 j^{-1}.$$

(2)
Now we use (1) if \(j \) is small compared with \(\rho^{-2} \), and (2) if \(j \) is large. In any case we get a metric on \(\tilde{V}^i \) as \(\rho \to \infty \), and this metric satisfies

\[-1 \geq K \geq -1 - \varepsilon^2(\rho)\]

for \(\varepsilon \to 0 \) as \(\rho \to \infty \).

3.6. **Remark.** Let us assume there exist isometric involutions \(I_1 \) and \(I_2 \) of \(V \) with the following two properties:

1. the involution \(I_2 \) for \(\alpha = 1, 2 \) fixes a totally geodesic hypersurface \(V_\alpha \subset V \) and the quotient \(V/I_2 \) is orientable for \(\alpha = 1, 2 \).
2. the hypersurfaces \(V_1 \) and \(V_2 \) meet at a totally geodesic submanifold \(V' \subset V \) with the angle \(\pi/2 \).

Notice that many \(\Phi_4 \) manifolds do admit such involutions.

Let us show, for this \(V' = V_1 \cap V_2 \), that no ramified (at \(V' \)) \(Z \)-covering \(\tilde{V} \to V \) admits a metric with \(K = -1 \) provided that \(\dim V \geq 4 \).

Proof. Observe that the hypersurfaces \(V_1 \) and \(V_2 \) divide \(V \) into 4 isometric sectors \(S_\beta \subset V \) with the dihedral angles \(\pi/2 \) at \(V' \). If \(\tilde{V} \) admits a metric \(\tilde{g} \) with \(K(\tilde{g}) = -1 \) then, by Mostow's theorem (compare 0.1), the involutions \(I_2 \) lift to \(2i \) isometric involutions on \(\tilde{V} \). The hypersurfaces fixed by these divide \(\tilde{V} \) into \(4i \) isometric sectors \(\tilde{S}_\beta \subset \tilde{V} \) where \(j = 1, \ldots, i \) and \(\beta = 1, 2, 3, 4 \), with dihedral angles \(\pi/2i \) at \(\tilde{V} \subset \tilde{V} \). The boundary \(\partial \tilde{S}_\beta \) is an \((n-1) \)-dimensional manifold (for \(n = \dim V \)) with \(K = -1 \) which is isometric (using Mostow's theorem again) to \(\partial \tilde{S}_\beta \), for all \(j = 1, \ldots, i \) and \(\beta = 1, 2, 3, 4 \). Therefore one can isometrically attach \(2i \) sectors \(\tilde{S}_{\beta, j} \) to two sectors \(S_\beta \). Since the total dihedral angle of the attached sectors equals \(\pi + \frac{2i\pi}{2i} = 2\pi \), the resulting manifold, say \(W \), is smooth with \(K = -1 \). Now we apply Mostow's theorem to \(W \) (compare 0.1) and obtain \(i+1 \) isometric involutions of \(W \) which permute sectors \(\tilde{S}_{\beta, j} \) and \(\tilde{S}_{\beta} \). Therefore \(\tilde{S}_{\beta, j} \) is isometric to \(S_\beta \) and so \(i = 1 \).

3.7. **Conformally flat manifolds with pinched metrics.** Assume that the manifold \(V \) admits \(i \)-isometric involutions fixing some hypersurfaces in \(V \) which divide \(V \) into \(2i \) isometric sectors meeting at \(V' \). (To construct such a \(V \), take a totally real algebraic number \(s \) all of whose conjugates but one are positive and such that the field \(\mathbb{Q}(s) \) contains \(\sin \frac{\pi}{i} \) and \(\cos \frac{\pi}{i} \). For example, take a generic elements \(\delta \in \mathbb{Q} \left(\sin \frac{\pi}{i}, \cos \frac{\pi}{i} \right) \) and let \(s = s' - r \), where \(r \) is a rational number between the minimal conjugate of \(s' \) and the following one. The desired manifold \(V' \) can now be obtained by dividing the hyperbolic space by an appropriate discrete group of \(\mathbb{Q}(s) \) automorphisms of the form \(x_1^2 + x_2^2 + \ldots + x_n^2 - s x_{i+1}^2 \) \(i+1 \) such sectors and obtains a new manifold, say \(\tilde{V} \), with the total angle \(\frac{2\pi}{i} \) at the “corner” \(V' \). By applying the argument in 3.6 one can easily show that most manifolds \(\tilde{V} \) admit no metric with \(K = -1 \). On the other hand, if \(i \) is large and \(i/\hat{i} \) is close to one, then there is an embedding
of \tilde{V} into some $(n+1)$-dimensional manifold \tilde{V}_+ (where $n = \dim V = \dim \tilde{V}$) with $K \equiv -1$, such that each sector in \tilde{V} isometrically goes to a totally geodesic sector (of codimension one) in \tilde{V}_+ and such that these sectors meet at (dihedral) angles close to π in \tilde{V}_+. Then one can easily construct a conformally flat metric on \tilde{V} whose curvature is close to -1. Thus, one produces a sequence of conformally flat manifolds $(\tilde{V}_i, \tilde{g}_i)$ of a given dimension $n \geq 4$, such that

$$-1 \geq K(\tilde{g}_i) \geq -1 - \varepsilon_i^2$$

for $\varepsilon_i \to 0$, and such that the \tilde{V}_i admit no metrics of curvature $K \equiv -1$.

§4. Manifolds with large pinching constants

4.1. We start with an elementary study of integral m-dimensional cycles in a complete manifold V with $\dim V \geq m$. A cycle in V is, by definition, a compact oriented m-dimensional pseudomanifold Z mapped into V by a Lipschitz map. Similarly, a chain in V is an oriented pseudomanifold C with boundary and a Lipschitz map $C \to V$. To avoid notational complications we treat our chains (and cycles) as embedded subpseudomanifolds $C \subset V$ (and $Z \subset V$) even if the implied Lipschitz maps are not one-to-one. However, the volume $\text{Vol}_m C$ of a chain C, for $m = \dim C$, is always counted with the geometric multiplicity of the implied map $C \to V$.

Definitions. The (flat norm) distance $Z_1 \overline{Z_2}$ between two m-cycles Z_1 and Z_2 in V is the lower bound of the $(m+1)$-volumes of the $(m+1)$-chains $C \subset V$ for which $\partial C = Z_1 - Z_2$.

We denote by $\text{Rad}(v)$ the convexity radius of V at $v \in V$, that is, the radius of the largest ball $B \subset V$ around v such that any two points in B can be joined by a unique geodesic in B. If $K(V) \leq 0$, the convexity radius $\text{Rad}(v)$ equals the injectivity radius.

4.2. Lemma. Fix an m-cycle $Z_0 \subset V$ and real numbers $A \geq 1$ and $\delta > 0$. There exists a cycle $Z \subset V$ such that:

(i) $ZZ_0 \leq A \exp \left(\frac{\text{Vol} Z_0}{\varepsilon_m \rho^m} \right)$, where $\varepsilon_m = (4m)^{-3m}$;

(ii) every cycle $Z' \subset V$ with $\text{Vol} Z' \leq \text{Vol} Z - \varepsilon_m \rho^m$ satisfies $ZZ' \geq ZZ_0 + A$;

(iii) if $v \in Z \subset V$ is a point for which $\text{Rad}(v) \geq \rho$, the intersection $Z_\rho = Z \cap B_\rho$, where $B_\rho \subset V$ is the ball of radius ρ around v, satisfies

$$\text{Vol}_m Z_\rho \geq 3 \varepsilon_m \rho^m.$$

Proof. We may assume (by scaling the metric in V by ρ^{-2}) that $\rho = 1$. Introduce the following function W on m-cycles:

$$W(Z) = \text{Vol} Z + \varepsilon_m \log (1 + ZZ_0 / A).$$
If a cycle \(Z \) minimizes \(W \), conditions (i) and (ii) are satisfied. In fact, it suffices to take a \(\delta \)-minimizing cycle \(Z \subset V \) for a sufficiently small \(\delta > 0 \), where "\(\delta \)-minimizing" means that

\[
W(Z) \leq \inf W(Z) + \delta.
\]

To prove (i), intersect \(Z \) with the balls \(B_r \) around \(v \in V \), for \(0 \leq r \leq \rho = 1 \), and denote by \(\partial_r \) the boundary of \(Z_r = Z \cap B_r \). Each cycle \(\partial_r \) bounds a chain \(C_r \) in \(B_r \), such that

\[
\text{Vol}_m C_r \leq \varepsilon_m (\text{Vol} \partial_r)^m(m-1),
\]

for \(\varepsilon_m = m^{2m} \) (see §3.4 in [Gr3]). Furthermore, the cycle \(C_r - Z_r \) clearly bounds a chain \(D_r \), such that

\[
\text{Vol} D_r \leq r (\text{Vol} C_r + \text{Vol} Z_r).
\]

Hence the cycle \(Z' = Z - Z_r + C_r \) satisfies

\[
\text{Vol} Z' - \text{Vol} Z \leq \varepsilon_m (\text{Vol} \partial_r)^m(m-1) - \text{Vol} Z_r,
\]

and

\[
Z' \subset Z_0 \leq ZZ_0 + r (\text{Vol} Z_r + \varepsilon_m (\text{Vol} \partial_r)^m(m-1)).
\]

Now, if \(Z \) minimizes the functional \(W \), we have

\[
\varepsilon_m (\text{Vol} \partial_r)^m(m-1) - \text{Vol} Z_r + \varepsilon_m r (\varepsilon_m (\text{Vol} \partial_r)^m(m-1) + \text{Vol} Z_r) \geq 0.
\]

Hence \((\text{Vol} \partial_r)^m(m-1) \geq \text{Vol} Z_r/(2 \varepsilon_m) \), and (iii) follows from the coarea inequality

\[
\text{Vol} Z_r \geq \int_0^r \text{Vol} \partial_r \, dr
\]

(compare §2.4 in [Gr3]). Finally, the formalism in §6.4 of [Gr3] shows that every \(\delta \)-minimizing cycle \(Z' \) can be regularized to a cycle \(Z \) such that \(|\text{Vol} Z - \text{Vol} Z'| + ZZ' \leq \delta' \), where \(\delta' \to 0 \) for \(\delta \to 0 \), and such that \(Z \) satisfies

\[
(\text{Vol} \partial_r)^m(m-1) \geq \text{Vol} Z_r/(2 \varepsilon_m + \delta').
\]

Now (iii) follows by the previous argument.

4.3. Consider a covering map \(p: \tilde{V} \to V \), take a cycle \(\tilde{Z}_0 \subset \tilde{V} \) and let the projection \(Z_0 = p(\tilde{Z}_0) \subset V \) bound a chain \(C_0 \subset V \). Fix a positive \(\rho \leq 1 \), take \(A = \max(1, \text{Vol} C_0) \) and let \(\tilde{Z} \subset \tilde{V} \) be a cycle satisfying (i)–(iii) in 4.2.

Lemma. If the manifold \(V \) has Rad \(\delta \geq \rho \) at some point \(\tilde{v} \in \tilde{Z} \), there exists a loop \(\gamma \) in \(V \) based at \(v = p(\tilde{v}) \) such that

(i) the homotopy class \([\gamma] \in \pi_1(V, v) \) is not contained in the subgroup \(\pi_1(V, \tilde{v}) \subset \pi_1(V, v) \);
(ii) length \(\gamma \leq 21 \), where

\[
l = \frac{2A}{\varepsilon_m \rho^m} \left(1 + \exp \left(\frac{\text{Vol} \tilde{Z}_0}{\varepsilon_m \rho^m} \right) \right).
\]
Proof. The cycle \(Z = p(\bar{Z}) \subseteq V \) bounds a chain \(C \subseteq V \) such that
\[
\text{Vol} \; C \leq \text{Vol} \; C_0 + \bar{Z}_0 \cdot Z \leq A \left(1 + \exp \left(\frac{\text{Vol} \; \bar{Z}_0}{\varepsilon_m \rho^m} \right) \right).
\]

By the coarea formula, the intersection of \(C \) with the ball \(B_R \subseteq V \) around \(v \) satisfies
\[
\text{Vol} \; \partial (B_r \cap C) \leq l^{-1} \; \text{Vol} \; C
\]
for some \(R \leq l \). Then the cycle \(Z' = Z - B_R \cap Z + \partial (B_r \cap C) \) satisfies
\[
\overline{Z Z'} \leq \text{Vol} \; C
\]
and
\[
\text{Vol} \; Z - \text{Vol} \; Z' \geq 3 \varepsilon_m \rho^m - l^{-1} \; \text{Vol} \; C \geq \varepsilon_m \rho^m.
\]

Now, if every loop in \(V \) of length \(\leq 2l \) and based at \(v \) lifts to \(\hat{V} \), the cycle \(Z' \) also lifts to a cycle \(\hat{Z}' \subseteq \hat{V} \) such that
\[
\hat{Z} \hat{Z}' \leq \text{Vol} \; C \leq \hat{Z}_0 \hat{Z} + A
\]
and
\[
\text{Vol} \; \hat{Z}' \leq \text{Vol} \; \hat{Z} - \varepsilon_m \rho^m.
\]

Hence, by (ii) of 4.2, some loop \(\gamma \) does not lift, and we have \([\gamma] = \pi_1(\hat{V}, \hat{v})\).

4.4. Let \(\hat{V} \) be an arbitrary \(K(P, 1) \)-space. Consider all virtually nilpotent subgroups \(N \subseteq \Pi \) (virtually nilpotent means that \(N \) contains a nilpotent subgroup of finite index), and call a homology class \(h \in H_*(\hat{V}) = H_*(\Pi) \) cuspidal if it lies in the span of the images of the inclusion homomorphisms \(H_*(N) \to H_*(\Pi) \). Observe that all \(h \in H_1(\Pi) \) are cuspidal. On the other hand, if \(\Pi \) is the fundamental group of a compact manifold of negative curvature, no non-zero element \(h \in H_*(\Pi) \) is cuspidal for \(m \geq 2 \).

Now let \(V \) be a complete manifold with pinched negative curvature,
\[-1 \geq K(V) \geq -x.
\]

Lemma. Let \(\hat{Z} \) be a non-cuspidal \(m \)-cycle in \(\hat{V} \) (i.e., \([\hat{Z}] \in H_m(\hat{V}) \) is non-cuspidal). Then there exists a point \(\hat{v} \in \hat{Z} \) such that the manifold \(\hat{V} \) satisfies
\[
\text{Rad}(\hat{v}) \geq \mu - \mu(x, \dim V) > 0.
\]

Proof. Take \(\mu \) to be the Margulis constant (see [Gr2, B-K]). By Margulis' lemma, for each connected component \(U \) of the region \(\{ \hat{v} \in \hat{V} \mid \text{Rad} \; \hat{v} \leq \mu \} \) the image of the inclusion homomorphism \(\pi_1(U) \to \pi_1(\hat{V}) \) is virtually nilpotent.

4.5. Let \(\Gamma \) be an arbitrary group, let \(\Pi \subseteq \Gamma \) be a subgroup and let \(\hat{h} \in H_*(\Pi) \) be a non-cuspidal element which goes to zero under the inclusion homomorphism \(H_*(\Pi) \to H_*(\Gamma) \). Denote by \(\Gamma(i) \) the free product of \(i \) copies of \(\Gamma \) amalgamated at \(\Pi \).
Proposition. Let \(V \) be a complete manifold with \(-1 \geq K(V) \geq -x\) and such that \(\pi_1(V) = \Gamma(i) \). Then
\[
x \geq \text{const}_i = \text{const}_i(\Gamma, \Pi, \dim V),
\]
where \(\text{const}_i \to \infty \) for \(i \to \infty \).

Proof. Let \(\Gamma_j \subset \Gamma(i) \) \((j = 1, \ldots, \ell)\) denote the \(j \)-th isomorphic copy of \(\Gamma \) in \(\Gamma(i) \), let \(V_j \to V \) be the covering maps with \(\pi_1(V_j) = \Gamma_j \), and let \(p_j : \tilde{V} \to V_j \) be the coverings with \(\pi_1(\tilde{V}) = \Pi \). The class \(h \) can be realized by a cycle \(\tilde{Z}_0 \) built of \(N = N(\Pi) \) simplices such that each cycle \(Z_0 = p_j(\tilde{Z}_0) \subset V_j \) bounds a chain \(C_0 \subset V_j \) composed of \(M = M(\Gamma \supset \Pi) \) simplices. By straightening these simplices (compare 0.1) we make \(\text{Vol}_m \tilde{Z} \leq N' \) and \(\text{Vol}_{m+1} C_0 \leq M' \), where \(m = \dim \tilde{Z} \) and \(N' = \pi N, M' = \pi M \). Next we apply 4.2 to \(\tilde{Z}_0 \) with \(\rho = \mu \) and \(A = \max(1, M') \). Since \(\tilde{Z} \) is non-cuspidal, there is a point \(\tilde{v} \in \tilde{Z} \) where \(\text{Rad}(\tilde{v}) \geq \rho \). Hence, by (i) in 4.3 and elementary properties of amalgamated products, there exist loops \(\gamma_i \in V_i \) of lengths bounded by \(2l \) (see (ii) in 4.3) whose projections to \(V \) are freely independent in \(\pi_1(V) \). Since \(K(V) \geq -x \) there can exist at most \(i_0 = i_0(x, \dim V, l) \) independent loops at a given point in \(V \), and the proof is concluded.

4.6. Example. Take a \(\Phi^n \)-manifold \(V \) as given by 1.3, containing an oriented totally geodesic hypersurface \(V_0 \) with boundary \(V' \). The \(Z_r \)-ramified covering \(\tilde{V} \to V \) contains (see 1.4) a (singular) subspace \(\Sigma \) whose fundamental group is isomorphic to \(\Gamma(i) \) for \(\Gamma = \pi_1(V_0) \) and \(\Pi = \pi_1(V') \). Since \(\Sigma \) is totally geodesic in \(\tilde{V} \) the group \(\Gamma(i) \) injects into \(\pi_1(V') \). Furthermore, if \(n \dim V \geq 4 \), the fundamental class \(V_0 \in H_{n+2}(\Pi) \) is non-cuspidal. Therefore the pinching constant of the covering of \(\tilde{V} \) with the groups \(\Gamma(i) \) goes to infinity as \(i \to \infty \). This shows that the pinching constant of \(\tilde{V} \) goes to infinity as well.

Remarks. (a) Suppose that \(\text{Rad}^i V' \geq r \geq 10 \). Then, for every \(i = 1, 2, \ldots, \) one can easily construct (compare 3.7) a complete \(m_i \)-dimensional manifold \(V_i^+ \) with \(K \equiv -1 \) for some \(m_i \leq n + \frac{\log(i+3)}{\rho} \), such that \(\pi_1(V_i^+) \approx \Gamma(i) \). Moreover, one can find such a \(V_i^+ \) admitting a compact region \(R \subset V_i^+ \) with convex boundary, such that \(V_i^+ \setminus R \) is homeomorphic to \(\partial R \times R \).

(b). If \(V \) admits at least \(j \geq 20 \) involutions fixing \(V' \) (compare 3.7) then, for every \(i \), one can construct a complete \(m_i \)-dimensional manifold \(\tilde{V}_i \) for some \(m_i \leq n + 5 \log(i-2+j) \), such that \(\pi_1(\tilde{V}_i) \approx \pi_1(V) \) and such that \(\tilde{V}_i^+ \) contains a compact region \(R \) with convex boundary \(\partial R \approx \tilde{V}_i \times S^{n-1} \) and \(\tilde{V}_i^+ \setminus R \approx \partial R \times R \). Moreover, there is an isometric (for the singular metric on \(\tilde{V} \) induced from \(V \)) embedding of \(\tilde{V} \) to \(\tilde{V}_i \), which sends every sector (compare 3.7) to a totally geodesic sector in \(\tilde{V}_i \). The details are left to the reader.

Acknowledgements. The authors want to thank Blaine Lawson for many stimulating discussions on the matters related to this paper. The authors are grateful to the referee for pertinent critical remarks.
References

Oblatum 8-X-1985 & 14-II-1986